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ABSTRACT: An artificial neural network (ANN) imple-
menting a back-propagation algorithm was applied for
the prediction of the glass-transition temperature (Tg) val-
ues of 84 polyacrylates and 21 polyvinyls. The experi-
mental Tg data of the polymers were divided into a
training set (50 polyacrylates) and a testing set (34 polya-
crylates and 21 polyvinyls). Three molecule descriptors
(mean atomic van der Waals volume, bond information
content, and three-dimensional molecule representation
of structures based on electron diffraction descriptor for
signal 13/weighted by atomic masses, Mor13m) were
used as input parameters of the neural network. Simu-

lated with the optimum back-propagation ANN 3-[3-2]-1,
the root mean square (rms) error for the testing set was
17.7 K, and the correlation coefficient was 0.942, which
were accurate in comparison with existing models. The
ANN model could be used not only to reveal the quanti-
tative relation between Tg and the molecular structure
but also to predict the Tg values of the polyacrylates and
polyvinyls. VC 2009 Wiley Periodicals, Inc. J Appl Polym Sci 115:
3721–3726, 2010
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INTRODUCTION

The glass-transition temperature (Tg) is the tempera-
ture at which the amorphous phase of a polymer is
converted between the rubbery and glassy states.1

Below the Tg, amorphous polymers are in a glassy
state, and most of their joining bonds are intact.
Above Tg, polymers become soft and capable of plas-
tic deformation without fracture. Tg is the most im-
portant and widely studied property of polymeric
and composite materials.2,3 In fact, Tg determines the
temperature windows for the processing and use of
these material and is a prerequisite for the prediction
and understanding of the mechanical and other
properties, such as hardness, modulus, heat capacity,
coefficient of thermal expansion, and viscosity.

Tg is a kinetic parameter and, thus, parametrically
depends on the melt cooling rate. The slower the
melt cooling rate is, the lower Tg is. In addition, Tg

depends on the measurement conditions, which are
not universally defined. Hence, the development of
theoretical methods for the prediction of Tg is
needed and is interesting.

The quantitative structure–property relationship
(QSPR) method has been reported quite extensively
in the literature to predict Tg for polymers. van
Krevelen4 correlated Tg with the group additive
properties method. The group additive properties
method is a purely empirical approach and limited
to systems composed only of functional groups that
have been previously investigated. Chen et al.5 intro-
duced a comprehensive neural network model with
28 group descriptors. A network trained with 65
polymers was tested with 6 polymers and had a rms
errors of 17 K (R2 ¼ 0.95) for the training set and
17 K (R2 ¼ 0.85) for the prediction set. The model
was accurate, but the ratio between the samples (65)
and descriptors (28) was 2.32, which was not equal
to or more than the minimum ratio of 5 to 1.
Bicerano6 related Tg with the solubility parameter

and 13 structural parameters for a data set of 320
polymers and produced a regression model with a
standard error of 24.65 K. However, he did not use
external data set compounds to validate this model.
Yu et al.7 developed a linear model with only two
descriptors. The model was tested to be accurate,
with correlation coefficients of 0.953 (rms ¼ 25.0 K)
for the training set and 0.952 (rms ¼ 20.8 K) for the
test set. In addition, Katritzky et al.8 introduced the
comprehensive descriptors for structural and statisti-
cal analysis (CODESSA) method to predict Tg for
88 linear homopolymers with five parameters and
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generated a QSPR model with a standard error of
32.9 K. Mattioni and Jurs9 developed a 10-descriptor
model and an 11-descriptor model to predict Tg val-
ues for two diverse sets of polymers. The test sets
rms errors of the two models were more than 21 K.

For most models discussed previously, the molecu-
lar structures were optimized with semiempirical
quantum chemical methods. Furthermore, a minus-
cule amount of descriptors were calculated for each
molecule. In this study, the QSPR method was
applied to predict the Tg of 105 polyacrylates and
polyvinyls with an artificial neural network (ANN)
model. The molecular descriptors used to describe
the structure of the polymers were extracted from the
monomers of the polymers with Dragon software.10

The monomer structures were optimized with density
functional theory (DFT) at the Becke-3-parameter-
Lee-Yang-Parr (B3LYP) level of theory with a 6-
31G(d,p) basis set, which means 6 primitive Gaussian
type orbital (GTO) for core electrons, 3 for inner and 1
for outer valence orbitals, 1 d polarization functions
added to heavy atoms and 1 p polarization functions
added to H atom. A total of 1664 molecular descrip-
tors were calculated for every molecule.

OVERVIEW OF THE ANN ARCHITECTURE

An ANN11–13 is a highly simplified model of the bio-
logical structures found in a human brain. In recent
years, the use of ANNs has become a very popular
and powerful chemometric tool to solve chemical
problems. ANN models are organized into a layered
structure, formed by one input layer, one output
layer, and at least one hidden layer. The input layer
receives input data (molecular descriptors), the hid-
den layer performs processing and transformation of
the input data, and the output layer relays the final
results (Tg values; Fig. 1). Each layer has different
numbers of neurons (or nodes). Each neuron has
weighted inputs, a transfer function, and one output.
Thus, each neuron is essentially an equation that
balances inputs and outputs.

The behavior of a neural network is determined by
the transfer functions of its neurons, the learning rule,
and the architecture itself. A learning rule allows the
network to adjust its connection weights to associate
given inputs with corresponding outputs. The learning
rule used in this study was the back-propagation or
modified d rule. The weights were the adjustable
parameters (in that sense, a neural network is a para-
meterized system). The weighed sum of the inputs
constituted the activation of the neuron. The activation
signal was passed through the transfer function to
produce a single output of the neuron. The transfer
function (i.e., sigmoid function) introduces nonlinearity
to the network. The internal network parameters (e.g.,
epoch size, momentum, learning rate, transfer func-

tion, and error function) and network geometry (i.e.,
the number of hidden layers and the number of nodes
per hidden layer) had significant effects on the net-
work performance.
The process of optimizing the connection weights

is known as training or learning. During training, the
error (i.e., the sum of squared differences between
the predicted and experimental values of the train-
ing set) is fed backwards through the network to
adjust the weights, minimize the error, and thus pre-
vent the same error from happening again. When
the ANN produces the desired output (i.e., it is
trained to a satisfactory level), the weighted links
between the units are saved. These weights are then
used as an analytical tool to predict results for a
new set of input data. This is a recall or prediction
phase when the network works only by the forward
propagation of data and there is no backward prop-
agation of error. The output of a forward propaga-
tion is the predicted model for the validation data.
Details on the principles, functioning, and applica-

tions of ANNs can be found in refs. 14 and 15.

EXPERIMENTAL

Data set

A total of 105 polyacrylates and polyvinyls and their
respective experimental Tg values (see Supplemental
Table) were taken from the literature.6,16 The entire
set contained a wide range of Tg values (194–420 K)
and was characterized by a high degree of structural
variety. The functional groups present in the side
chains included halides, acetates, ethers, hydrocar-
bon chains, aromatic, nonaromatic rings, and so on.
The experimental Tg values were divided into a

Figure 1 Structure model of a back-propagation ANN.
xn, ym and Op are the nth node of the input layer, the yth
node of the hidden layer and the pth nodes of the output
layer, respectively.
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training set and a prediction set. The training set
included 50 polyacrylates, whereas the test set
included 34 polyacrylates and 21 polyvinyls.

Calculation of the molecular descriptors

To calculate the molecular descriptors, the polymers
were represented by their corresponding monomers.
For example, the structure used to calculate the
descriptors for poly(acrylic acid) was the acrylic acid
molecule. All polymers had wide molecular weight
distributions and possessed high molecular weights.
Thus, it was impossible to calculate the descriptors
directly for the entire molecule. There existed corre-
lations between the polymer properties and the
monomers used in the polymerization because the
properties depended on the chemical structure of
the polymer molecules, and this structure was condi-
tioned by the monomer structure. Thus, statistical
methods such as multiple linear regression (MLR)
and ANN could be used to develop correlations
between the polymer properties and the descriptors
obtained from the monomers. In fact, many researches
have determined that the properties of polymers are
correlated with their monomer structures.17,18

DFT is an extremely successful approach for the
description of the ground-state properties of molecules.
In addition, the computational cost of the DFT calcula-
tion, even when electron correlation is treated, is not
as expensive as conventional high-level ab initio meth-
ods, such as configuration interaction or coupled-clus-
ter methods. Thus, we adopted this method to opti-
mize the models with the Gaussian 03 program19 at
the B3LYP level of theory with a 6-31G(d,p) basis set.

All of the geometries of the monomers were fully
optimized without the application of symmetry or
structural constraints. This was accomplished with
the default Gaussian convergence criteria. All of the
optimized structures were characterized as true
local-energy minima on the potential energy surfa-
ces, without imaginary frequencies. The vibrational
frequencies were calculated by application of the ideal
gas, rigid rotor, and harmonic oscillator approximations.

After the chemical structures were optimized,
the Gaussian output files (*.out) were opened and
saved as Sybyl MOL2 files (*.mol2) with Gauss-
View 3.09. Sybyl MOL2 files (*.mol2) were then
used as the input for the Dragon software.10 A total
of 1664 molecular descriptors were calculated for
every molecule. More information about the types of
molecular descriptors calculated with Dragon software
can be found in Dragon software users’ guide.10

Selection of the molecule descriptors

MLR is the most widely used and most well-
known modeling method. A MLR model can be

expressed as Y ¼ a1 þ a2X2 þ a3X3 þ . . . þ anXn,
where Y is the dependent variable (e.g., Tg); X2,
X3, . . ., and Xn are the dependent variables (e.g.,
molecular descriptors); and a1, a2, a3, . . ., and an are
the regression coefficients. Stepwise MLR was used
to seek an optimum subset of descriptors for an MLR
model with the SPSS 11.5 program.20 This method
only added one parameter to the model at a time and
always in the order from most significant to least sig-
nificant. Some important statistical parameters were
used to evaluate the molecular descriptors. The t
value (or t test) is the statistic used to test whether or
not the regression coefficient is equal to the hypothe-
sized value [ta/2(n-p-1)]. On the basis of the t value,
the level value of significance (p value) was also cal-
culated: |t| > ta/2(n-p-1) or p < 0.05 (the default level
of significance) indicated that a descriptor was signif-
icant. Lower p values or higher |t| values correspond
to the relatively more significant regression coeffi-
cients. Variance inflation factors (VIFs), defined as
VIF ¼ (1 � R2)�1, were used to identify whether
excessively high multicollinearities existed among the
descriptors; VIF < 10 indicated a tolerable multicolli-
nearity among descriptors;9 that is, the squared multi-
collinearity coefficient R2 did not exceed 0.90.

Determination of the network parameters

The appropriate values of the network parameters
stated previously aided network learning. In this
study, three descriptors found in the MLR model
were fed to ANN as input vectors; the output pa-
rameter was Tg (p ¼ 1). We empirically determined
the sigmoid parameter (0.9), the learning rate (0.1),
the momentum parameter (0.6), the permission net-
work error (0.00001), and the maximum number of
epochs (5000).21,22 The optimal number of hidden
layers and the number of neurons in each hidden
layer were determined by variation of the number of
hidden layers and the number of hidden neurons
and observation of rms errors. The sum of rms
errors of the training set and the test set was used to
evaluate the accuracy of the model. The smaller the
sum of rms errors was, the higher the predictive
quality was.

RESULTS AND DISCUSSION

By carrying out the correlation between the 1664
descriptors and Tg of 50 samples in the training
set with stepwise MLR analysis in the SPSS 11.5
program,20 we obtained the optimal MLR model.
The MLR model included three molecule descrip-
tors: mean atomic van der Waals volume (Mv),
bond information content (BIC5; neighborhood
symmetry of the fifth order), and three-dimen-
sional (3D) molecule representation of structures
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based on electron diffraction (MoRSE) descriptor
for signal 13/weighted by atomic masses. The sta-
tistical parameters corresponding to the model of
Tg obtained from the training set follow:

Tg ¼ 73:050þ 698:016Mv� 278:545BIC5
� 54:569Mor13m (1)

R ¼ 0:928;R2 ¼ 0:861; se ¼ 20:9K; F ¼ 95:194;N ¼ 50

where N is the number of samples, R is the correla-
tion coefficient, se is the standard error of estimation,
and F is the Fischer ratio. The MLR model was used
to make predictions for the test set. The characteris-
tics of the descriptors used in the MLR model are
shown in Table I. The rms errors were 20.1 K (R ¼
0.928) for the training set and 21.7 K (R ¼ 0.908) for
the test set.

The three descriptors were then fed to the ANN
as input parameters. The final optimum ANN was
obtained by trial and error. The ANN included two
hidden layers. The first hidden layer comprised
three nodes; the second one included two nodes.
Thus, the architecture of the optimum neural net-
work was expressed as 3-[3-2]-1. The weights matri-
ces of the neuron links in the networks are shown in
Table II. Tg values calculated with the ANN and
MLR models are listed in Supplemental Table. The
predicted results of the training set and the test set
are depicted in Figures 2 and 3, respectively. The
rms errors were 15.5 K for the training set and 17.7
K for the test set, which were superior to the results
obtained from the MLR model in this study. This
indicates that the correlation between Tg and the
structural parameters outlined previously was non-
linear rather than linear. In comparison with previ-
ous models,5–9 this ANN model showed better statis-
tical quality.

Table II shows that the three descriptors were all
significant descriptors from the significance test. Fur-
thermore, the VIF value of each descriptor was less
than two, which suggested that the descriptors did
not contaminate each other.
According to the t test (in Table I), the most sig-

nificant descriptor appearing in the MLR model
was Mv (scaled on the carbon atom). Generally,
the major factors affecting the Tg values of poly-
mers are intermolecular forces and chain stiffness
(or mobility). The constitutional descriptor Mv
reflects the hindrance to rotation about the poly-
meric main chain, which affects chain stiffness (or
mobility). For example, some polymers with chlo-
rine atoms in the repeating units possess high po-
larity, which can enhance the interaction within a
polymer chain and between different chains and
result in higher Tg values, although these polymers
had larger Mv values because Mv of a chlorine
atom is larger than that of a hydrogen atom.
Thus, the descriptor Mv bore a positive coefficient
in the MLR model.
The second significant descriptor included in the

model was BIC5. BIC5 is represented in eq. (2):

BIC5 ¼ IC5

log2ð
PnBT

b¼1 p
�
bÞ

(2)

where IC5 is the neighborhood information content,
nBT is the number of bonds, and p* is the conven-
tional bond order (1 for single, 2 for double, 3 for
triple, and 1.5 for aromatic bonds). Equation (2) sug-
gests that a repeating unit with more double, triple,
and aromatic bonds would have a smaller BIC5
value. However, these bonds can increase the chain
stiffness and lead to a higher Tg value. Thus, the
information indices descriptor BIC5 corresponds
to rotatable bond fraction (i.e., single bonds) in

TABLE I
Characteristics of the Descriptors in the MLR Model

Descriptor Coefficient
Standard
error p t VIF

Constant 73.050 38.072 0.061 1.919 —
Mv 698.016 50.816 0.000 13.736 1.010
BIC5 �278.545 31.049 0.000 �8.971 1.011
Mor13m �54.569 9.300 0.000 �5.868 1.001

TABLE II
Weights Matrices of the Neuron Links in the Networks

First hidden layer Second hidden layer Output layer

5.573 �2.513 �3.871 2.210 �21.052 6.766
�3.493 �0.231 2.270 7.934 �15.746 �3.106
0.614 �3.689 1.598 �6.453 3.920 —
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the molecule. Moreover, a fractional increase in the
rotatable bonds in a molecule is conducive for the
mobility of polymer chain.

The third significant descriptor was the 3D MoRSE
descriptor Mor13m.10,23 The 3D MoRSE descriptor
based on the atomic mass (m) can be expressed as:

Morsm ¼
XnAT�1

I¼1

XnAT

J¼Iþ1

mImJ

sinðsrijÞ
srij

(3)

where Morsm is the scattered electron intensity, rij is
the interatomic distance, and nAT is the number of
atoms. The term s represents the scattering in vari-
ous directions by a collection of nAT atoms. In
DRAGON, it is assumed that s takes integer values
in the range 0–31 (for s ¼ 0, the scattering ratio is
assumed to be equal to 1). Therefore, the descriptor
Mor13m (s ¼ 13) retains important structural fea-

tures, such as the mass and the amount of branch-
ing,10,23 although these structural features of a
repeating unit have a significant effect on Tg of a
polymer. Thus, the descriptor Mor13m is correlated
with Tg.
Usually, it is difficult for a QSPR model to be

extrapolated if the training and test sets have differ-
ent structures. For example, our ANN model could
not be used to predict the Tg values of polymetha-
crylates. However, it was successful in the predic-
tion for 21 polyvinyls. The reason may be that
polyvinyls and polyacrylates have similar repeating
unit structures (ACH2CHXA).

CONCLUSIONS

An ANN model with only three descriptors was suc-
cessfully developed to predict the Tg values of vinyl
polymers. Mv described the polymer chain stiffness;
whereas the 3D MoRSE descriptor Mor13m and
BIC5 reflected the molecular mobility. Therefore, the
three descriptors represented the essential factors
governing the nature of glass transition in the poly-
mers. The correlation between Tg and the descriptors
was nonlinear rather than linear, and application of
the ANN method to predict Tg values for polyvinyls
and polyacrylates is feasible.
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